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Abstract

We discuss a 4-dimensional ensemble Kalman filter
method (4DEnKF), which is implemented in a way that
observations that are asynchronous with the analysis cy-
cle may be assimilated naturally. Tests using the Lorenz
40 variable model compare analysis error of 4DEnKF
with other, ad hoc means of handling asynchronous ob-
servations.

1. INTRODUCTION

The Kalman filter is a key feature of data assimilation in
numerical weather and ocean forecasting (Kalnay, 2003).
Its adaptive nature is the cornerstone of efforts to opti-
mize state estimation on the basis of a physical model
and measured observations of related variables. The
Kalman filter is an optimal solution in the case of linear
system dynamics.

The difficulty of data assimilation in numerical
weather forecasting is tied to the large number of vari-
ables in the model and the nonlinearity of the dynamics
being modelled. The method of ensemble Kalman fil-
ters (EnKF) has developed as a means of attacking both
problems. An ensemble of background vector fields is
integrated by the model and used to estimate the current
covariance matrix, a key part of the Kalman computa-
tion. Numerical experiments have shown that ensemble
Kalman filters (EnKF, e.g., Evensen 1994; Evensen and
van Leewen 1996, Houtekamer and Mitchell 1998, 2001;
Hamill and Snyder 2000) are efficient ways to carry out
data assimilation from simple models to state-of-the-art
operational numerical prediction models. The ensemble
square-root Kalman filter approach (Tippett et al. 2003;
Bishop et al. 2001; Anderson 2001; Whitaker and Hamill
2002; Ott et al. 2002) has attracted much recent attention.

Hunt et al. (2003) proposed a means for asyn-
chrononous observations to be assimilated in the ensem-
ble square root Kalman filter. The Four-Dimensional
Ensemble Kalman Filter (4DEnKF) is a practical way
of unifying the ensemble Kalman filter and the four-
dimensional variational approach. Observations can be
taken into account in a natural way, even if taken at times
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different from assimilation times. The observational in-
crements are propagated at intermediate time steps using
the ensemble of background forecasts. This extension of
the EnKF to a 4DEnKF is an analogue to the extension
of the three-dimensional variational technique (3D-Var)
to the four dimensional variational technique (4D-Var).
The new idea is to infer the linearized model dynamics
from the ensemble instead of the tangent-linear map, as
done in conventional 4D-Var schemes. Furthermore, it
was shown in (Hunt et al. (2003) that in the case of linear
dynamics, 4DEnKF is equivalent to instantaneous assim-
ilation of measured data.

2. ENSEMBLE KALMAN FILTERS

First recall the standard EnKF method, which assimilates
observations that are time-synchronous with the analysis.
Let

ẋm = Gm(x1, . . . , xM ) (1)

for m = 1, . . . , M be a continuous dynamical system
representing the background vector field, wherex =
(x1, . . . , xM ). The Ensemble Kalman Filter is designed
to track the evolution of anM-dimensional Gaussian dis-
tribution centered atx(t) with covariance matrixP(t).

The implementation of (Ott et al. 2003; Tippett
et al. 2003), followsk + 1 trajectories of (1) starting
from initial conditionsxa(1), . . . , xa(k+1) over a time in-
terval[ta, tb]. We assume the system is high-dimensional,
meaning thatk + 1 ≤ M. The k + 1 initial condi-
tions should be chosen so that their sample mean and
sample covariance arex (ta) andP(ta), respectively. Af-
ter following the system over the time interval, de-
note the trajectory points at the end of the interval by
xb(1), . . . , xb(k+1), and compute a new sample meanxb

and sample covariancePb from thesek +1 vectors. This
is achieved by defining the mean vector

xb =
1

k + 1

k+1

∑
i=1

xb(i)

and

δxb(i) = xb(i) − xb,

and defining the matrix

Xb =
1√
k

[δxb(1)| · · · |δxb(k+1)]



and theM × M covariance matrix

Pb = Xb(Xb)T . (2)

The maximum possible rank ofPb is k , since the sum of
the columns ofXb is zero.

In the Ensemble Kalman Filter, data assimilation
is done using observations assumed to have been taken
at time tb. The observations are used to replace the
dynamics-generated pairxb, Pb at timetb with a revised
pair xa, Pa that are used asx(t ′a) andP(t ′a) on the next
time interval[t ′a, t ′b] wheret ′a ≡ tb.

In the typical case the rank ofPb is k . Then the col-
umn spaceS of Pb is k -dimensional, and equals the row
space, sincePb is a symmetric matrix. The orthonor-
mal eigenvectorsu(1), . . . , u(k ) of Pb that correspond to
nonzero eigenvalues span this space. Since the variation
of the ensemble members occurs in the directions span-
ning the vector spaceS, we generate corrections toxb in
that space. LetQ = [u(1)| · · · |u(k )] be theM × k matrix
whose columns form a basis ofS. To representPb in
this basis, define thek × k matrix P̂b = QT PbQ.

The data analysis step for EnKF uses observations
(y1, . . . , yl ) measured at assimilation timetb that we as-
sume are linearly related to the dynamical statex by
y = Hx , whereH is the observation operator. This as-
sumption simplifies our presentation, but the method can
be extended to the case of a nonlinear observation op-
erator. Denote byR the error covariance matrix of the
observations. DefinêH = HQ to restrict the action of
H to the subspaceS. Recursive weighted least squares
with current solutionxb and error covariance matrix̂Pb

yields

P̂a = P̂b(I + ĤT R−1ĤP̂b)−1

∆x̂ = P̂aĤT R−1(y − Hxb)

xa = xb + Q∆x̂ (3)

The corrected most likely solution isxa, with error co-
variance matrixP̂a.

To finish the step and prepare for a new step on the
next time interval, a new ensemble ofk + 1 initial con-
ditionsxa(1), . . . , xa(k+1) must be produced. They should
have the analysis meanxa and analysis covariance ma-
trix P̂a. One approach (Ott et al. 2002), out of many
possible choices, is to define the positive square root ma-
trix

Y = {I + (X̂b)T (P̂b)−1(P̂a − P̂b)(P̂b)−1X̂b}1/ 2, (4)

whereX̂b = QT Xb. Define the matrixXa = XbY and

Xa =
1√
k

[δxa(1)| · · · |δxa(k+1)].

Next define the vectors

xa(i) = δxa(i) + xa.

It can be checked that

xa =
1

k + 1

k+1

∑
i=1

xa(i)

Pa = Xa(Xa)T (5)

satisfy (3).

3. ASSIMILATION OF ASYNCHRONOUS DATA

The above description assumes that the data to be
assimilated was observed at the assimilation timetb.
The 4DEnKF method adapts EnKF to handle asyn-
chronous observations, those that have occurred at non-
assimilation times. The key idea is to mathematically
treat the observation as a slightly modified observation
of the current state at the assimilation time. The method
of (Hunt et al. 2003) consists of using the dynamics con-
tained in the ensemble members to carry this out. In this
way we avoid the need to linearize the original equations
of motion, as is necessary in standard implementations
of 4D-Var.

Notice that Eqs. (3,4,5) result in analysis vec-
tors xa(1), . . . , xa(k+1) that lie in the space spanned by
the background ensemblexb(1), . . . , xb(k+1). Consider
model states of the form

xb =
k+1

∑
i=1

wixb(i). (6)

The goal of the analysis is to find the appropriate set of
weightswa(j)

1 , . . . , wa(j)
k+1 for each analysis vectorxa(j).

Now let y = h(x ) be a particular observation made
at timetc 6= tb. We associate to the statexb in (6) at time
tb a corresponding state

xc =
k+1

∑
i=1

wix
c(i), (7)

wherexc(i) is the state of theith ensemble solution at
time tc . We assign the observationh(xc) at timetc to the
statexb given by (6). Eqn. (7) was utilized by (Bishop
et al. 2001) and (Majumdar et al. 2002) to predict the
forecast effects of changes in the analysis error. Here, we
use this property to propagate the dynamical information
within the analysis time window.

It remains to express the asynchronous observations
h(xc) as functions ofxb, the state at the analysis time.
This functional relationship is needed to apply the stan-
dard recursive least squares equation as in (3). Let

Eb = [xb(1)| · · · |xb(k+1)]

and
Ec = [xc(1)| · · · |xc(k+1)]

be the matrices whose columns are the ensemble mem-
bers at the timestb and tc , respectively. Then (6) and



(7) say thatEbw = xb and Ecw = xc, respectively,
wherew = [w1, . . . , wk+1]T . The orthogonal projec-
tion to the column span ofEb is given by the matrix
Eb(ET

b Eb)−1ET
b , meaning that the coefficientsw in (6)

can be defined byw = (ET
b Eb)−1ET

b xb. The linear com-
bination (7) isxc = Ecw = Ec(ET

b Eb)−1ET
b xb. There-

fore the observationh(xc), expressed as a function of the
background statexb at the time of assimilation, is

h(Ecw) = h(Ec(ET
b Eb)−1ET

b xb). (8)

The latter expression can be substituted directly into
the ensemble filter equations (3). For example, a set
of observations denoted by the matrixH and time-
stamped attc can be represented at timetb by the matrix
HEc(ET

b Eb)−1ET
b . Therefore the innovationy − Hxc

learned from the observations is treated instead asy −
HEc(ET

b Eb)−1ET
b xb in the assimilation step. This tech-

nique is equivalent to the computation of the forcing of
the observational increments at the correct time in 4D-
Var; however, it propagates the increments forward or
backward in time without the need for the linear tangent
model or its adjoint.

Multiple observations are handled in the same
manner. Assume the observation matrix isH =
(hT

1 | · · · |hT
r )T , where the observation row vectors

h1, . . . , hr correspond to timestc1 , . . . , tcr , respectively.
Then the observation matrixH in (3) is replaced with the
matrix







h1Ec1

...
hlEcr






(ET

b Eb)−1ET
b . (9)

In addition, it should be noted that thetci can be smaller
or larger thantb, allowing for observations to be used at
their correct observational time even after the nominal
analysis time. In the case of linear system dynamics, the
4DEnKF technique is equivalent to assimilating data at
the time it is observed.

4. COMPUTER EXPERIMENTS

The differential equations model of (Lorenz, 1998) is
a reasonably complex, but simply implemented spatio-
temporal dynamical model that is useful for illustrating
the use of 4DEnKF. Consider the vector field defined by

ẋm = (xm+1 − xm−2)xm−1 − xm + F (10)

for m = 1, . . . , M and with periodic boundary condi-
tionsx1 = xM+1. In experiments shown here, the forcing
parameter was set toF = 8 and the system dimension
M = 40. Under these conditions, the system dynamics
exhibit high-dimensional chaos.

A long background trajectoryx∗, to be considered
as the true trajectory, was integrated. The average root

mean square deviation from the mean is approximately
3.61 for the true trajectory. We produced artificial noisy
observations at each time interval∆t by adding uncorre-
lated Gaussian noise with variance1 to the true state at
each spatial location.
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FIG. 1: Root mean square error of proposed 4DEnKF
method (circles) compared to standard EnKF (asterisks) and
EnKF with time interpolation (triangles). Variance inflation is
set at0.005 per time step. Symbols showing RMSE = 1 actu-
ally represent values≥ 1. RMSE is averaged over several runs
of 40,000 steps.

Figure 1 shows that if we use 4DEnKF, assimilations
can be skipped with little loss of accuracy in tracking the
system state. The system is advanced in steps of size
∆t = .05, but instead of assimilating the observations
at each step, assimilation of past data is done only ev-
ery everys steps. The resulting root mean square error
(RMSE) is plotted as circles in Figure 1 as a function of
s. For s ≤ 6, it appears that little accuracy is lost. The
fact that the RMSE in Fig. 1 stays constant ass increases
shows the ability of 4DEnKF to take asynchronous ob-
servations into account without carrying out analysis at
each observation step, for the Lorenz40 example. As
mentioned above, it can be shown analytically that the
4DEnKF method is equivalent to assimilating at each ob-
servation time in the case of linear background dynamics.
The experiment shows that the property can hold as well
for chaotic, nonlinear dynamics, at least for small values
of s.

The RMSE of two other methods are shown in Fig. 1
for comparison. The asterisks denote the RMSE found
by using standard EnSQKF, allowings steps of length
∆t to elapse between assimilations. Only those obser-
vations occurring at the assimilation time were used for
assimilation. The triangles refer to time-interpolation of
the data since the last assimilation. In this alternative,
linear interpolation of individual observations as a func-
tion of the ensemble background state evolved by the
model is used to create an improved observationy∆(tb)



at the assimilation time. In other words, the innovation
at time tc is added instead at assimilation timetb. For
the Lorenz example, where the observations are noisy
states, this amounts to replacing the observation at time
tc with y∆(tb) ≡ y (tc) + xb − xc for assimilation at time
tb, which is carried out by standard EnKF. The idea be-
hind this technique is widely used in operational 3D-Var
systems to assimilate asynchronous observations (e.g.,
Huang et al. 2002; Benjamin et al. 2003). Our implemen-
tation provides somewhat optimistic results for this tech-
nique, since our background error covariance matrix is
not static (independent of time) and homogeneous (inde-
pendent of location) as it is assumed in a 3D-Var. As Fig-
ure 1 shows, for the latter two methods, the accuracy of
the assimilated system state becomes considerably worse
compared to 4DEnKF as the steps per assimilations in-
creases.
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FIG. 2: Variance inflation has only a small effect on
4DEnKF. The RMSE of the method is shown forǫ = 0.005
(circles),0.01 (asterisks), and0.015 (triangles) per time step.

Variance inflation was used in the experiments de-
scribed above, meaning that the analysis covariance ma-
trix was artificially inflated by addingǫI to P̂a for small
ǫ. In Figure 1,ǫ = 0.005 per time step was used for all
methods. Variance inflation helps to compensate for un-
derestimation of the uncertainty in the background state
due to nonlinearity, limited ensemble size, and model er-
ror.

Figure2 shows the effect of varying the amount of
variance inflation applied to the 4DEnKF method. Vari-
ance inflation is often done by enlargingP̂b rather than
P̂a, in order to make up for model evolution that is not
captured by the ensemble members. In this experiment
we enlarged̂Pa instead, so that the ensemble would not
have to be adjusted before and after the analysis step.
The two approaches yielded quite similar results.

The results in Fig. 1 show that for pre-assimilation
data, 4DEnKF is superior to straightforward EnKF as
well as an alternative form where observational incre-

ments were computed with the background at the ob-
serving time, a method also used in operational centers.
We have also achieved similar results by applying the
4DEnKF methodology to the Local Ensemble Kalman
Filter (LEKF), as developed in (Ott et al. 2003). The lo-
cal approach is based on the hypothesis that assimilation
can be done on moderate-size spatial domains and re-
assembled. The 4D treatment of the asynchronous local
observations can be exploited in the same way as shown
in this article.

The computational savings possible with the
4DEnKF technique arise from the ability to improve the
use of asynchronous observations without more frequent
assimilations. The extra computational cost of 4DEnKF
is dominated by inverting the(k + 1) × (k + 1) matrix
ET

b Eb in (8), which is comparatively small if the ensem-
ble sizek + 1 is small compared to the number of state
variablesM. Moreover, applying this technique in con-
junction with local domains as in LEKF allowsk to be
greatly reduced in comparison withM.
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